Math, asked by Anonymous, 10 months ago

prove that
sinA×secA+cosA×cosecA=secA×cosecA​

Answers

Answered by Anonymous
39

Question :

To prove:

sinA × secA+ cos A × cosecA = secA × cosec A

Trignometric Formulas

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1
  4. cosecx =\frac{1}{sinx}
  5. secx = \frac{1}{cosx}

Solution :

LHS

 =  \sin \: A \:  \times sec \: A +  \cos \: A\times cosec \: A

 = sin \: A \times  \frac{1}{cos \: A}  + cos \: A\:  \times  \frac{1}{sin \: A}

 =  \frac{sin \: A}{cos \: A}  +  \frac{cos \: A}{sin \: A}

 =  \frac{ \sin {}^{2}  \: A+ cos {}^{2} a}{sin \: A\:  \times cos \: A}

we know that sin²A + cos²A = 1

 =  \frac{1}{cos \: A\:  \times sin \: A}

 = sec \: A\times cosec \: A

RHS =secA × cosec A

_____________

⇒LHS = RHS

\huge{\bold{ Hence\: Proved}}

__________________________

More Trigonometry Formulas

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)
Answered by Anonymous
1

Answer:

\huge{\boxed{\green{\mathcal{Answer-}}}}

 \sin(a)  \times  \sec(a)  +   \cos(a)  \times  \csc(a)  =  \sec(a)  \times  \csc(a)

♡ FORMULA USED :

 { \sin(a) }^{2}  +  { \cos(a) }^{2}  = 1

 \sin(a)  =  \frac{1}{ \csc(a) }

 \cos(a)  =  \frac{1}{ \sec(a) }

TAKING L.H.S.

----

L.H.S.

  = \sin(a)  \times  \csc(a)  +  \cos(a)  \times  \csc(a)  \\  =   \frac{ \sin(a) }{ \cos(a) }  +   \frac{ \cos(a) }{ \sin(a) }  \\  =  \frac{ { \sin(a) }^{2} +  { \cos(a) }^{2}  }{ \cos(a) \times  \sin(a)  }  \\  \ =  \frac{1}{ \cos(a) \times  \sin(a)  }  \\  =  \sec(a)  \times  \csc(a)

= R.H.S.

HOPE THAT HELPS

Similar questions