prove that :sinA/secA+tanA-1+ cosA/ cosecA+cotA-1=1
Answers
Answered by
0
Answer: sinA/secA+tanA-1+ cosA/ cosecA+cotA-1=1
= sinA/[(1/cosA)+(sinA/cosA)-1] + cosA/[(1/sinA)+(cosA/sinA)-1]
= sinA/[(1+sinA-cosA)/cosA] + cosA/[(1+cosA-sinA)/sinA]
= (sinA*cosA)/(1+sinA-cosA) + (cosA*sinA)/(1+cosA-sinA)
= sinA*cosA[1/(1+sinA-cosA) +1/(1+cosA-sinA)]
= sinA*cosA[(1+cosA-sinA+1+sinA-cosA)/(1+sinA-cosA)(1+cosA-sinA)]
= sinA*cosA[2/(1+cosA-sinA+sinA+sinAcosA-sin2A-cosA-cos2A+cosAsinA)]
sinA*cosA[2/(1-sin2A-cos2A+2sinAcosA)]
= sinAcosA[2/(1-(sin2A+cos2A)+2sinAcosA)]
= sinAcosA[2/(1-1+2sinAcosA)] (since sin2A+cos2A=1)
= sinAcosA[2/2sinAcosA]
=sinAcosA*1/sinAcosA
= 1 PROVED
please mark brainliest
Similar questions
India Languages,
6 months ago
Science,
6 months ago
Science,
1 year ago
Math,
1 year ago
Economy,
1 year ago