prove that
sinA/secA+tanA-1 +cosA/cosecA+cotA-1 =1
Attachments:
Answers
Answered by
5
sinA/(1/cosA+sinA/cosA-1)+cosA/(1/sinA+cosA/sinA-1)
=sinA/({(1+sinA-cosA)/cosA}+cosA{(1+COSA-sinA)/sinA}
=SinAcosA/(1+sinA-cosA)+cosAsinA/(1+cosA-sinA)
=sinAcosA/[(1+cosA-sinA+1+sinA-cosA)/(1+sinA-cosA)(1+cosA-sinA)
=sinAcosA[2/(
1+cosA-sinA+sinA+sinAcosA-sin^2A-cosA-cos^2A+cosAsinA)]
=sinAcosA[2/2sinAcosA+1-1]
=sinAcosA/sinAcosA
=1
=sinA/({(1+sinA-cosA)/cosA}+cosA{(1+COSA-sinA)/sinA}
=SinAcosA/(1+sinA-cosA)+cosAsinA/(1+cosA-sinA)
=sinAcosA/[(1+cosA-sinA+1+sinA-cosA)/(1+sinA-cosA)(1+cosA-sinA)
=sinAcosA[2/(
1+cosA-sinA+sinA+sinAcosA-sin^2A-cosA-cos^2A+cosAsinA)]
=sinAcosA[2/2sinAcosA+1-1]
=sinAcosA/sinAcosA
=1
Answered by
0
Answer:
Your answer attached in the photo
Attachments:
Similar questions