Math, asked by msamu1967, 21 days ago

Prove that sinA/secA+tanA-1+cosA/cosecA +cotA-1=1​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{sinA}{secA + tanA - 1}  + \dfrac{cosA}{cosecA + cotA - 1}

We know,

\boxed{ \tt{ \: secx =  \frac{1}{cosx} \: }}

\boxed{ \tt{ \: tanx =  \frac{sinx}{cosx} \: }}

\boxed{ \tt{ \: cosecx =  \frac{1}{sinx} \: }}

\boxed{ \tt{ \: cotx =  \frac{cosx}{sinx} \: }}

So, on substituting all these values, we get

\rm \:  =  \:\dfrac{sinA}{\dfrac{1}{cosA}  + \dfrac{sinA}{cosA}  - 1}  + \dfrac{cosA}{\dfrac{1}{sinA}  + \dfrac{cosA}{sinA}  - 1}

\rm \:  =  \:\dfrac{sinA}{\dfrac{1 + sinA - cosA}{cosA}  }  + \dfrac{cosA}{\dfrac{1 + cosA - sinA}{sinA}}

\rm \:  =  \:\dfrac{sinAcosA}{1 + sinA - cosA}  + \dfrac{sinAcosA}{1 + cosA - sinA}

can be further rewritten as

\rm=  \:sinAcosA\bigg[\dfrac{1}{1 + sinA - cosA}+\dfrac{1}{cosA - sinA}  \bigg]

\rm = sinAcosA\bigg[\dfrac{1 + cosA - sinA + 1 + sinA - cosA}{(1 + sinA - cosA)(1 + cosA - sinA)} \bigg]

\rm = sinAcosA\bigg[\dfrac{2}{(1 + sinA - cosA)(1 + cosA - sinA)} \bigg]

can be further rewritten as

\rm = sinAcosA\bigg[\dfrac{2}{[1 +(sinA - cosA)][(1  - [sinA - cosA)]} \bigg]

\rm \:  =  \:\dfrac{2 \: sinA \: cosA}{ {1}^{2}  -  {(sinA - cosA)}^{2} }

\rm \:  =  \:\dfrac{2 \: sinA \: cosA}{1 - ( {sin}^{2}A +  {cos}^{2}A - 2sinAcosA)  }

\rm \:  =  \:\dfrac{2 \: sinA \: cosA}{1 - ( 1 - 2sinAcosA)  }

\rm \:  =  \:\dfrac{2 \: sinA \: cosA}{1 - 1  + 2sinAcosA}

\rm \:  =  \:\dfrac{2 \: sinA \: cosA}{2sinAcosA}

\rm \:  =  \:1

Hence,

 \red{\boxed{ \sf{ \: \:\dfrac{sinA}{secA + tanA - 1}  + \dfrac{cosA}{cosecA + cotA - 1}  = 1}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Similar questions