prove that sinA- sin^3A/ 2cos^3 A- cos A = tanA
Answers
Answered by
21
hope you understand...
Attachments:
![](https://hi-static.z-dn.net/files/d9a/54c91791e8752a114b71192644a60a8e.jpg)
Bob1111:
thank you
Answered by
23
♧♧HERE IS YOUR ANSWER♧♧
Trigonometry is the study of angles and its ratios. This study prescribes the relation amongst the sides of a triangle and angles of the triangle.
There are sine, cosine, tangent, cot, sectant and cosec ratios to an angle of a triangle.
Let me tell you an interesting fact about Trigonometry.
"Triangle" > "Trigonometry"
Remember some formulae now :
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Want to learn more!
Here it is :
sin(A + B) = sinA cosB + cosA sinB
sin(A - B) = sinA cosB - cosA sinB
cos(A + B) = cosA cosB - sinA sinB
cos(A - B) = cosA cosB + sinA sinB
SOLUTION :
L.H.S.
![= \frac{sin \alpha - 2 {sin}^{3} \alpha }{2 {cos}^{3} \alpha - cos \alpha } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha )}{cos \alpha (2 {cos}^{2} \alpha - 1) } \\ \\ = \frac{sin \alpha \times cos2 \alpha }{cos \alpha \times cos2 \alpha } \\ \\ = \frac{sin \alpha }{cos \alpha } \\ \\ = tan \alpha = \frac{sin \alpha - 2 {sin}^{3} \alpha }{2 {cos}^{3} \alpha - cos \alpha } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha )}{cos \alpha (2 {cos}^{2} \alpha - 1) } \\ \\ = \frac{sin \alpha \times cos2 \alpha }{cos \alpha \times cos2 \alpha } \\ \\ = \frac{sin \alpha }{cos \alpha } \\ \\ = tan \alpha](https://tex.z-dn.net/?f=++%3D+%5Cfrac%7Bsin+%5Calpha++-+2+%7Bsin%7D%5E%7B3%7D+%5Calpha++%7D%7B2+%7Bcos%7D%5E%7B3%7D+%5Calpha++-+cos+%5Calpha++%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Bsin+%5Calpha+%281+-+2+%7Bsin%7D%5E%7B2%7D++%5Calpha+%29%7D%7Bcos+%5Calpha+%282+%7Bcos%7D%5E%7B2%7D+%5Calpha++-+1%29+%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Bsin+%5Calpha+++%5Ctimes+cos2+%5Calpha+%7D%7Bcos+%5Calpha++%5Ctimes+cos2+%5Calpha+%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Bsin+%5Calpha+%7D%7Bcos+%5Calpha+%7D++%5C%5C++%5C%5C++%3D+tan+%5Calpha+)
= R.H.S. [Proved]
RULE :
1 - 2 sin²α = cos2α
2 cos²α - 1 = cos2α
♧♧HOPE IT HELPS YOU♧♧
Trigonometry is the study of angles and its ratios. This study prescribes the relation amongst the sides of a triangle and angles of the triangle.
There are sine, cosine, tangent, cot, sectant and cosec ratios to an angle of a triangle.
Let me tell you an interesting fact about Trigonometry.
"Triangle" > "Trigonometry"
Remember some formulae now :
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Want to learn more!
Here it is :
sin(A + B) = sinA cosB + cosA sinB
sin(A - B) = sinA cosB - cosA sinB
cos(A + B) = cosA cosB - sinA sinB
cos(A - B) = cosA cosB + sinA sinB
SOLUTION :
L.H.S.
= R.H.S. [Proved]
RULE :
1 - 2 sin²α = cos2α
2 cos²α - 1 = cos2α
♧♧HOPE IT HELPS YOU♧♧
Similar questions