prove that sinA.sin(B-C)+sinB.sin(C-A)+sinC.sin(A-B)=0
Answers
Answered by
142
SinA . Sin(B - C) + SinB . Sin(C - A) + SinC . Sin(A - B)=0
=>SinA . (SinBCosC - CosBSinC) + SinB . (SinCCosA - CosCSinA) + SinC . (SinACosB - CosASinB)
=>SinASinBCosC -SinACosBSinC + SinBSinCCosA - SinBCosCSinA + SinCSinACosB - SinCCosASinB
All get cancelled
=>0
Hence Proved
=>SinA . (SinBCosC - CosBSinC) + SinB . (SinCCosA - CosCSinA) + SinC . (SinACosB - CosASinB)
=>SinASinBCosC -SinACosBSinC + SinBSinCCosA - SinBCosCSinA + SinCSinACosB - SinCCosASinB
All get cancelled
=>0
Hence Proved
Answered by
52
It should be:
sin(a) sin(b-c) + sin(b) sin(c-a) + sin(c) sin(a-b) = 0
Just use the addition formula for sine, i.e. sin(x+y) = sin(x)cos(y) + cos(x)sin(y) and the fact that sin(-x) = -sin(x) and cos(-x) = cos(x), and everything cancels out.
Hope this helps you.....
Pleasemark it as brainliest.....
sin(a) sin(b-c) + sin(b) sin(c-a) + sin(c) sin(a-b) = 0
Just use the addition formula for sine, i.e. sin(x+y) = sin(x)cos(y) + cos(x)sin(y) and the fact that sin(-x) = -sin(x) and cos(-x) = cos(x), and everything cancels out.
Hope this helps you.....
Pleasemark it as brainliest.....
Similar questions