Prove that sinA + sin3A + sin5A + sin7A / cosA + cos3A + cos5A + cos7A = tan4A
Answers
Answer:
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)=2sin4A(cos3A+cosA)/2cos4A(cos3A+cosA)
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)=2sin4A(cos3A+cosA)/2cos4A(cos3A+cosA)=sin4A/cos4A
SinA+sin3A+sin5A+sin7A/cosA+cos3A+cos5A+cos7A=(sinA+sin7A)+(sin3A+sin5A)/(cosA+cos7A)+(cos3A+cos5A)=(2sin4Acos3A+2sin4AcosA)/(2cos4Acos3A+2cos4AcosA)=2sin4A(cos3A+cosA)/2cos4A(cos3A+cosA)=sin4A/cos4A=tan4A (Proved)
hereis the correct answer please mark me brainliest and give thanks
We know the sum - to - product identities,
Thus,
Since
Hence Proved!