Math, asked by Nikhil95471, 8 hours ago

Prove that sinA tanA÷1-cos A=1+secA

Answers

Answered by CopyThat
13

Step-by-step explanation:

Given :

\rightarrowtail \bold{\dfrac{sinA\;tanA}{1-cosA} }

To prove :

\rightarrowtail \bold{\dfrac{sinA\;tanA}{1-cosA} =1+secA}

Solution :

\mapsto \bold{\dfrac{sinA\;tanA}{1-cosA}}

  • Rationalizing the denominator.

\mapsto \bold{\dfrac{sinA\;tanA}{1-cosA}\times\dfrac{1+cosA}{1+cosA}  }

  • ∵ (a - b)(a + b) = a² - b²

\mapsto \bold{\dfrac{(sinA\;tanA)(1+cosA)}{(1)^{2}-(cos^{2})} }

  • ∵ tanA = sinA/cosA
  • ∵ sin²A + cos²A = 1
  • ∴ 1 - cos²A = sin²A

\mapsto \bold{\dfrac{sinA(\dfrac{sinA}{cosA})(1+cosA) }{sin^{2}A} }

\mapsto \bold{\dfrac{\dfrac{sin^{2}A(1+cosA)}{cosA} }{sin^{2}A} }

  • sin²A, sin²A get cancelled.

\Rightarrow \bold{\dfrac{1+cosA}{cosA} }

\Rightarrow \bold{\dfrac{1}{cosA}+\dfrac{cosA}{cosA}  }

  • ∵ 1/cosA = secA

\Rightarrow \bold{secA+1}

\twoheadrightarrow \bold{1+secA}

  • ∴ L.H.S = R.H.S
Similar questions