Math, asked by subhendudhua, 1 year ago

prove that (sinb+Sina)/(cosb-cosa)=(cosa+cosb)/(sina-sinb)

Answers

Answered by tejasri2
8
Hi Friend !!!

Here is ur answer !!!

 \frac{sin \: b \:  + sin \: a}{cos \: b - cos \: a}  =  \frac{cosa + cosb}{sina - sinb}  \\  \\   (sina + sinb)(sina - sinb) = (cosa + cosb)(cosb - cosa) \\  \\  {sina}^{2}  -  {sinb}^{2}  = {cosb}^{2}  -  {cosa}^{2}  \\  \\ sin(a - b)sin(a  + b) = sin(a - b)sin(a + b) \\  \\ hence \: proved \:

:-)
Similar questions