prove that sinQ/1+cosQ +1+cosQ/sinQ=2cosec Q
Answers
Answered by
4
Answer:
Step-by-step explanation:
sinQ/1+cosQ +1+cosQ/sinQ=2 cosec Q
First multiply the denominators,
= sinQ(sinQ)/1+cosQ(sinQ) + 1+cosQ(1+cosQ)/sinQ(1+cosQ)
= sin2Q/sinQ+cosQsinQ + 1+cos2Q+2cosQ/sinQ+sinQcosQ
=sin2Q+1+cos2Q+2cosQ/sinQ+cosQsinQ
=2+2cosQ/sinQ+sinQcosQ
Now take 2 from the numerator and sinQ from the denominator,
2(1+cosQ)/sinQ(1+cosQ)
cancelling 1+cosQ from numerator and denominator,
=2/sinQ
=2cosecQ . Proved!
Similar questions