prove that sinteta(1+tanteta) + costeta(1+cotteta) = secteta + cosecteta
Answers
Answered by
3
Answer:
Secθ + Cosecθ
Step-by-step explanation:
To prove--->
--------------
Sinθ(1+ tanθ)+Cosθ(1+Cotθ)=Secθ +
Cosecθ
Proof--->
----------
LHS=Sinθ(1+tanθ)+Cosθ(1+Cotθ)
=Sinθ(1+ Sinθ/Cosθ)+Cosθ(1+Cosθ /
Sinθ)
=Sinθ(Cosθ +Sinθ/Cosθ) + Cosθ(Sinθ +Cosθ /Sinθ )
=(Cosθ + Sinθ) (Sinθ/Cosθ + Cosθ/Sinθ)
=(Cosθ+Sinθ) (Sin²θ + Cos²θ/Sinθ Cosθ)
We know that
Sin²θ + Cos²θ =1 , applying it here
=(Cosθ+Sinθ) ( 1/Sinθ Cosθ)
=(Cosθ/Sinθ Cosθ + Sinθ / Sinθ Cosθ)
= 1 / Sinθ + 1/ Cosθ
We know that
1/Sinθ =Cosecθ and 1/Cosθ = Secθ
applying these identities here
= Cosecθ + Secθ =RHS
Similar questions