Prove that sintheta+1-costheta/costheta-1+sintheta=1+sintheta/costheta
Answers
Answered by
0
Step-by-step explanation:
let theta be A (this is for easy to write)
sinA+1-cosA/sinA-(1-cosA) × sinA+(1-cosA)/sinA+(1-cosA)
{sinA+(1-cosA)}²/(sinA)²-(1-cosA)²
sin²A+2sinA-2sinAcosA+(1-2cosA+cos²A)/sin²A-(1-2cosA+cos²A)
sin²A+cos²A+1+2sinA-2sinAcosA-2cosA/sin²A-1+2cosA-cos²A
(2+2sinA)-(2sinAcosA+2cosA)/1-cos²A-1+2cosA-cos²A
2(1+sinA)-2cosA(1+sinA)/2cosA-2cos²A
(2-2cosA)(1+sinA)/cosA(2-2cosA)
1+sinA/cosA
L.H.S= R.H.S
Similar questions
Political Science,
5 months ago
History,
5 months ago
Hindi,
5 months ago
English,
10 months ago
Math,
10 months ago
Social Sciences,
1 year ago
English,
1 year ago