Math, asked by mayankmanral5037, 7 hours ago

prove that sintheta-costheta+1/sintheta+costheta-1=1/sectheta-tantheta​

Answers

Answered by gamingstormy3
0

hope this helped

Step-by-step explanation:

you just need to divide cos∅

Attachments:
Answered by pulakmath007
0

SOLUTION

CORRECT QUESTION

TO PROVE

 \displaystyle \sf{ \frac{ \sin \theta -  \cos \theta   + 1}{\sin \theta  +   \cos \theta   -  1} =  \frac{1}{ \sec \theta \:  -  \tan \theta}  }

PROOF

LHS

 \displaystyle \sf{ =  \frac{ \sin \theta -  \cos \theta   + 1}{\sin \theta  +   \cos \theta   -  1}  }

Dividing numerator and denominator both by cos θ we get

 \displaystyle \sf{ =  \frac{ \tan \theta - 1 +  \sec \theta  }{\tan \theta  +  1 -  \sec \theta   }  }

 \displaystyle \sf{ =  \frac{ \tan \theta - 1 +  \sec \theta  }{\tan \theta   -  \sec \theta + 1   }  }

 \displaystyle \sf{ =  \frac{ \tan \theta - 1 +  \sec \theta  }{(\tan \theta   -  \sec \theta )  - ( { \tan}^{2}  \theta -  { \sec}^{2} \theta )  }  }

 \displaystyle \sf{ =  \frac{ \tan \theta - 1 +  \sec \theta  }{(\tan \theta   -  \sec \theta )  - (\tan \theta   +   \sec \theta )  (\tan \theta   -  \sec \theta )  }  }

 \displaystyle \sf{ =  \frac{ \tan \theta - 1 +  \sec \theta  }{(\tan \theta   -  \sec \theta )   (1 - \tan \theta    -  \sec \theta )  }  }

 \displaystyle \sf{ =  \frac{ \tan \theta  +  \sec \theta - 1  }{(\sec \theta - \tan \theta   )   (\tan \theta  +  \sec \theta - 1 )  }  }

 \displaystyle \sf{ =  \frac{1  }{\sec \theta - \tan \theta  }  }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

2. Find the value of p if

3cosec2A(1+COSA)(1 - COSA) =p

https://brainly.in/question/23381523

Similar questions