Math, asked by tvsmanju1996, 11 months ago

prove that sintheta _costheta+1/sintheta+costheta=1/sectheta_tantheta using the identify sec(sec) theta=1+tan(tan)theta​

Answers

Answered by MaskedTitan
1

Answer:

LHS = (sinθ - cosθ + 1)/(sinθ + cosθ - 1)

dividing by cosθ both Numerator and denominator

= (sinθ/cosθ - cosθ/cosθ + 1/cosθ)/(sinθ/cosθ + cosθ/cosθ - 1/cosθ)

= (tanθ + secθ - 1)/(tanθ - secθ + 1)

Multiply (tanθ - secθ) with both Numerator and denominator

= (tanθ + secθ - 1)(tanθ - secθ)/(tanθ - secθ + 1)(tanθ - secθ)

= {(tan²θ - sec²θ) - (tanθ - secθ)}/(tanθ - secθ + 1)(tanθ - secθ)

= (-1 - tanθ + secθ)/(tanθ - secθ + 1)(tanθ - secθ) [ ∵ sec²x - tan²x = 1 ]

= -1/(tanθ - secθ) = 1/(secθ - tanθ) = RHS

Similar questions