Math, asked by kinggamers, 8 months ago

prove that sintheta + sectheta the whole square + costheta + cosectheta the whole square=1 + sectheta cosectheta the whole square​

Answers

Answered by kamathgs05
3

Answer:

Step-by-step explanation:

Let angle theta be represented by A.

(sinA + Sec A)² + (cos A + cosec A)² 

 = [ (SinA CosA + 1)²/CosA ]² + [ (CosA SinA + 1)² / Sin²A ]

 =  (1+ SinA CosA)² * [1 / Cos²A  + 1/sin²A ]

 =  (1 + SinA CosA)² * [ Cos²A + Sin²A]/ [cos²A * Sin²A ]

 =  ( 1 + SinA CosA)²/ (cosA * SinA)²

 =  [ 1/cosA * 1/sinA  + 1 ] ²

 = [ Sec A Cosec A + 1 ]²

pls mark me as the brainliest

Similar questions