Math, asked by Abhayrajsharma7225, 11 months ago

Prove that sinx -2sin^3x/2cos^3x- cosx =tanx

Answers

Answered by hukam0685
10

Step-by-step explanation:

To prove

 \frac{sin \: x - 2 {sin}^{3}x }{2 {cos}^{3}x - cos \: x }  = tan \: x \\  \\

Take LHS

\frac{sin \: x (1- 2 {sin}^{2}x )}{cos \: x(2 {cos}^{2}x - 1)} \\  \\ as \: we \: know \: that \\  \\  {sin}^{2}x = 1 -  {cos}^{2}x \\  \\ put \: this \: in \: the \: numerator \\  \\   \frac{sin \: x (1- 2 (1 -  {cos}^{2}x ))}{cos \: x(2 {cos}^{2}x - 1)} \\  \\  = \frac{sin \: x (1- 2  + 2{cos}^{2}x )}{cos \: x(2 {cos}^{2}x - 1)} \\ \\  = \frac{sin \: x ( 2{cos}^{2}x  - 1)}{cos \: x(2 {cos}^{2}x - 1)} \\  \\  =  \frac{sin \: x}{cos \: x}  \\  \\  = tan \: x \\  \\

= RHS

hence proved

Hope it helps you.

Answered by FelisFelis
3

\frac{\sin \: x - 2 {\sin}^{3}x }{2 {\cos}^{3}x - \cos \: x }=\tan x Proved.

Step-by-step explanation:

Consider the provided information.

\frac{\sin \: x - 2 {\sin}^{3}x }{2 {\cos}^{3}x - \cos \: x }=\tan x

Consider the LHS of the above equation.

Take sin(x) and cos(x) common.

\frac{\sin \: x (1- 2 {\sin}^{2}x) }{\cos x(2 {\cos}^{2}x -1)}

Use the identity: sin²θ=1-cos²θ

\frac{\sin x[1-2(1-\cos^2x)]}{\cos x(2\cos^2x-1)}

Use the identity: \frac{\sin x}{\cos x}=\tan x

\tan x\times\frac{1-2+2\cos^2x}{2\cos^2x-1}

\tan x\times\frac{2\cos^2x-1}{2\cos^2x-1}

\tan x

Hence, proved

#Learn more

Cos theta/1-tan theta + sin theta/1-cot theta

brainly.in/question/3581222

Similar questions