prove that sinx +cos x/cosx-sinx =tan2x+sec2x
Answers
Answered by
4
Hi ,
LHS = ( sin x + cos x )/( cosx - sin x )
= [(cosx+sinx)(cosx+sinx)]/[(cosx-sinx)(cosx+sinx)]
= ( cosx + sinx )²/[ cos² x - sin² x ]
= (cos²x+sin² x + 2sinxcosx)/(cos2x)
************************"********
We know that ,
1 ) cos² x - sin² x = cos 2x
2 ) cos² x + sin² x = 1
3 ) 2sinxcosx = sin2x
*********************************
= ( 1 + sin 2x )/cos 2x
= ( 1/cos 2x ) + ( sin 2x /cos 2x )
= Sec 2x + tan 2x
= RHS
I hope this helps you .
: )
LHS = ( sin x + cos x )/( cosx - sin x )
= [(cosx+sinx)(cosx+sinx)]/[(cosx-sinx)(cosx+sinx)]
= ( cosx + sinx )²/[ cos² x - sin² x ]
= (cos²x+sin² x + 2sinxcosx)/(cos2x)
************************"********
We know that ,
1 ) cos² x - sin² x = cos 2x
2 ) cos² x + sin² x = 1
3 ) 2sinxcosx = sin2x
*********************************
= ( 1 + sin 2x )/cos 2x
= ( 1/cos 2x ) + ( sin 2x /cos 2x )
= Sec 2x + tan 2x
= RHS
I hope this helps you .
: )
Answered by
2
Solution:-
sinx +cos x/cosx-sinx =tan2x+sec2x
= (sinx +cos x/cosx-sinx)×(cosx+sinx)/cosx+sinx)
=( 2sinx.cosx+ sin^2+cox^2)/[(cos^2x-sin^2x)]
= ( sin2x + 1)/cos2x
= sin2x/cos2x + 1/cos2x
= [tan2x +sec2x]proved
sinx +cos x/cosx-sinx =tan2x+sec2x
= (sinx +cos x/cosx-sinx)×(cosx+sinx)/cosx+sinx)
=( 2sinx.cosx+ sin^2+cox^2)/[(cos^2x-sin^2x)]
= ( sin2x + 1)/cos2x
= sin2x/cos2x + 1/cos2x
= [tan2x +sec2x]proved
Similar questions