Math, asked by KartikSehgal, 1 year ago

prove that sinx-cosx+1/sinx+cosx-1=1/secx-tanx

Answers

Answered by ashishks1912
13

GIVEN :

Prove that \frac{sinx-cosx+1}{sinx+cosx-1}=\frac{1}{secx-tanx}

TO PROVE :

The following equation \frac{sinx-cosx+1}{sinx+cosx-1}=\frac{1}{secx-tanx}

SOLUTION :

Given that \frac{sinx-cosx+1}{sinx+cosx-1}=\frac{1}{secx-tanx}

We have to prove that the equation is true.

Now taking the LHS \frac{sinx-cosx+1}{sinx+cosx-1}

Let S=sinx and C=cosx

\frac{S-C+1}{S+C-1}

=\frac{(S-C)+1}{(S+C)-1}

Multiply and divide by (S-C)-1 we get,

=\frac{(S-C)+1}{(S+C)-1}\times \frac{(S-C)-1}{(S-C)-1}

By using the Algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{(S-C)^2-1^2}{((S+C)-1)((S-C)-1)}

=\frac{S^2-2SC+C^2-1}{(S+C)(S-C)-S-C-S+C+1}

By using the trignometric identity :

sin^2x+cos^2x=1 where sinx=C and cosx=C

=\frac{S^2-2SC+C^2-(S^2+C^2)}{S^2-SC+CS-C^2-2S+1}

=\frac{S^2-2SC+C^2-S^2-C^2}{S^2-C^2-2S+(S^2+C^2)}

=\frac{-2SC}{2S^2-2S}

=\frac{-2SC}{2S(S-1)}

=\frac{-C}{S-1}

=\frac{-C}{-(1-S)}

=\frac{C}{1-S}

=\frac{cosx}{1-sinx}

\frac{sinx-cosx+1}{sinx+cosx-1}=\frac{cosx}{1-sinx}\hfill (1)

Now taking the RHS \frac{1}{secx-tanx}

\frac{1}{secx-tanx}

By using the trignometric identities

i) secx=\frac{1}{cosx} and

ii) tanx=\frac{sinx}{cosx}

=\frac{1}{\frac{1}{cosx}-\frac{sinx}{cosx}}

=\frac{1}{\frac{1-sinx}{cosx}}

=\frac{cosx}{1-sinx}

\frac{1}{secx-tanx}=\frac{cosx}{1-sinx}\hfill (2)

Comparing the equations (1) and (2) we get,

⇒ (1) = (2)

∴  LHS=RHS

∴  \frac{sinx-cosx+1}{sinx+cosx-1}=\frac{1}{secx-tanx}

Hence proved.

Similar questions