prove that: (sinx+cosx )2 + (sinx-cosx)2=2
Answers
Answered by
4
Solution:
We have to prove:
→ (sin θ + cos θ)² + (sin θ - cos θ)² = 2
Taking Left Hand Side, we get:
= (sin θ + cos θ)² + (sin θ - cos θ)²
We know that:
→ (a + b)² = a² + 2ab + b²
→ (a - b)² = a² - 2ab + b²
Therefore, LHS becomes:
= (sin²θ + 2 sin θ cos θ + cos²θ) + (sin²θ - 2 sin θ cos θ + cos²θ)
= sin²θ + cos²θ + sin²θ + cos²θ
= 2(sin²θ + cos²θ)
= 2 × 1
= 2
Therefore:
→ (sin θ + cos θ)² + (sin θ - cos θ)² = 2
Hence Proved..!!
To Know More:
1. Relationship between sides and T-Ratios.
- sin θ = Height/Hypotenuse
- cos θ = Base/Hypotenuse
- tan θ = Height/Base
- cot θ = Base/Height
- sec θ = Hypotenuse/Base
- cosec θ = Hypotenuse/Height
2. Square formulae.
- sin²θ + cos²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
3. Reciprocal Relationship.
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- tan θ = 1/cot θ
4. Cofunction identities.
- sin(90° - θ) = cos θ
- cos(90° - θ) = sin θ
- cosec(90° - θ) = sec θ
- sec(90° - θ) = cosec θ
- tan(90° - θ) = cot θ
- cot(90° - θ) = tan θ
5. Even odd identities.
- sin -θ = -sin θ
- cos -θ = cos θ
- tan -θ = -tan θ
Similar questions