Math, asked by samkmark, 2 days ago

prove that: (sinx+cosx )2 + (sinx-cosx)2=2​

Answers

Answered by anindyaadhikari13
4

Solution:

We have to prove:

→ (sin θ + cos θ)² + (sin θ - cos θ)² = 2

Taking Left Hand Side, we get:

= (sin θ + cos θ)² + (sin θ - cos θ)²

We know that:

→ (a + b)² = a² + 2ab + b²

→ (a - b)² = a² - 2ab + b²

Therefore, LHS becomes:

= (sin²θ + 2 sin θ cos θ + cos²θ) + (sin²θ - 2 sin θ cos θ + cos²θ)

= sin²θ + cos²θ + sin²θ + cos²θ

= 2(sin²θ + cos²θ)

= 2 × 1

= 2

Therefore:

→ (sin θ + cos θ)² + (sin θ - cos θ)² = 2

Hence Proved..!!

To Know More:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Height/Base
  • cot θ = Base/Height
  • sec θ = Hypotenuse/Base
  • cosec θ = Hypotenuse/Height

2. Square formulae.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1

3. Reciprocal Relationship.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • tan θ = 1/cot θ

4. Cofunction identities.

  • sin(90° - θ) = cos θ
  • cos(90° - θ) = sin θ
  • cosec(90° - θ) = sec θ
  • sec(90° - θ) = cosec θ
  • tan(90° - θ) = cot θ
  • cot(90° - θ) = tan θ

5. Even odd identities.

  • sin -θ = -sin θ
  • cos -θ = cos θ
  • tan -θ = -tan θ
Similar questions
Science, 1 day ago