Math, asked by anujpratap9542, 6 months ago

Prove that (sinx+secx)2 +(cosx+cosec)2 = (1+secx- cosecx)2

Answers

Answered by Ataraxia
7

Correct question :-

Prove that \sf (sinx+secx)^2+(cosx+cosecx)^2 = (1+secx \ cosecx )^2 .

Solution :-

\sf L.H.S = (sinx+secx)^2+(cosx+cosecx)^2

\bullet \bf \ secx= \dfrac{1}{cosx} \\\\\bullet \ cosec x = \dfrac{1}{sinx}

      = \sf \left( sinx +\dfrac{1}{cosx} \right)^2 + \left(cos x +\dfrac{1}{sinx} \right)^2  \\\\= \left( \dfrac{sinxcosx+1} {cosx}  \right) ^2 + \left( \dfrac{sinxcosx+1}{sinx} \right)^2 \\\\= (sinxcosx+1)^2  \times \left[ \dfrac{1}{cos^2x}+\dfrac{1}{sin^2x} \right] \\\\= (sinxcosx+1)^2 \times \dfrac{sin^2x +cos^2x }{sin^2xcos^2x} \\\\

\bullet \bf \ sin^2x+cos^2x = 1

       = \sf (sinxcosx+1)^2 \times \dfrac{1}{sin^2xcos^2x} \\\\= \left(\dfrac{sinxcosx+1}{sinxcos}\right)^2 \\\\= \left( \dfrac{sinxcosx}{sinxcosx} ^2 +\dfrac{1}{sinxcosx} \right)^2 \\\\= \left( 1+\dfrac{1}{sinxcosx} \right) ^2 \\\\= \left(1 +  \dfrac{1}{sinx}  \times \dfrac{1}{cosx} \right)^2  \\\\= (1+cosecx  \ secx )^2 \\\\= (1+secx \ cosecx) ^2\\\\= R.H.S

Hence proved.

Answered by Anonymous
14

\underline{\sf{\red{Correct \: Question:-}}}

\sf\ (sin x + sec x)^2 + ( cos x + cosec x)^2

\sf\ = ( 1+secx-cosec x)^2

\underline{\sf{\red{Given:-}}}

  • \sf\ (sin x + sec x)^2 + ( cos x + cosecx)^2

\sf\ = ( 1+secx-cosec x)^2

\underline{\sf{\red{Solution:-}}}

\sf\ LHS

\longrightarrow\: \sf\ (sinx+secx)^2 + (cos x + cosec x)^2

\longrightarrow\: \sf\ (sin x + \dfrac{1}{cos x} )^2 + (cos x + \dfrac{1}{sin x} )^2

\longrightarrow\: \sf\ sin^2x + \dfrac{1}{cos^2x} + 2 \dfrac{sin x}{cos x} + cos^2x +

\sf\ \dfrac{1}{sin^2x} + 2 \dfrac{cos x}{sin x}

\longrightarrow\: \sf\ (sin^2x + cos^2x) + ( \dfrac{1}{cos^2x} + \dfrac{1}{sin^2x} )

\sf\ + 2 (\dfrac{ sin x}{cos x} + \dfrac{cos x}{sin x}

\longrightarrow\: \sf\ 1 + \dfrac{1}{sin^2x . cos^2 x} + \dfrac{2}{sin x . cos x}

\longrightarrow\: \sf\ \dfrac{ sin^2x . cos^2 + 1+2 sin x . cos x}{sin^2x . cos^2x}

\longrightarrow\: \sf\ ( \dfrac{sin x. cos x +1}{sin x. cos x} )^2

\longrightarrow\: \sf\ (1 + sec x. cosec x^2)^2

Hence,

  • LHS = RHS
Similar questions