prove that, sinx sin2x + 2 cosx cos2x = 2 cos^3 x
Answers
Answered by
1
Answer:
2(cosx+2cos
2
x−1)+2sinxcosx.(1+2cosx)−2sinx=0
or 2(2cos
2
x+cosx−1)+2sinx(2cos
2
x+cosx−1)=0
2(1+sinx)(cosx+1)(2cosx−1)=0
We have to determine values of x s.t. −π≤x≤π
1+sinx=0 ∴sinx=−1
∴x=2nπ+ 23π
∴x=− 2π ,for n=−1 ∵−π≤x<π
cosx=−1=cosπ ∴cosx=1/2=cos(π/3)
∴x=2nπ±π/3
∴x=π/3, −π/3
Hence the values of x s.t. −π≤x≤π are−π,−π/2,−π/3,π/3,π.
Similar questions