Prove that sinx+sin3x+sin5x+sin7x=4 cosx cos2x sin4x
Answers
Answered by
5
sinx + sin3x + sin5x + sin7x
= (sinx + sin3x) + (sin5x + sin7x)
Formula :-
Using this formula :-
= 2sin2x.cosx + 2sin6x.cosx
= 2cosx [sin2x + sin6x ]
= 2cosx. (2sin4x.cos2x)
= 4cosx.cos2x.sin4x
_____________________________________________________
Some additional identities :-
★tan θ = sin θ /cos θ
★cot θ = cos θ / sin θ
★(sin² θ) + (cos² θ) = 1
★1 + tan² θ = sec² θ
★1 + cot² θ = cosec² θ
Answered by
3
Answer:
→ sinx + sin3x + sin5x + sin7x
= (sinx + sin3x) + (sin5x + sin7x)
Formula:
Using this formula:
= 2sin2x.cosx + 2sin6x.cosx
= 2cosx [sin2x + sin6x ]
= 2cosx. (2sin4x.cos2x)
= 4cosx.cos2x.sin4x
Similar questions