Math, asked by neelofer9202, 1 year ago

Prove that sinx+sin3x+sin5x+sin7x=4 cosx cos2x sin4x

Answers

Answered by Anonymous
5

\textbf{\underline{\underline{According\:to\:the\:Question}}}

sinx + sin3x + sin5x + sin7x

= (sinx + sin3x) + (sin5x + sin7x)

Formula :-

\tt{\rightarrow sinC+sinD = 2sin\dfrac{C+D}{2}.cos\dfrac{C-D}{2}}

Using this formula :-

\tt{\rightarrow 2sin\dfrac{x+3x}{2}.cos\dfrac{3x-x}{2} + 2sin\dfrac{5x+7x}{2}.cos\dfrac{7x-5x}{2}}

= 2sin2x.cosx + 2sin6x.cosx

= 2cosx [sin2x + sin6x ]

\tt{\rightarrow 2cosx(2sin\dfrac{2x+6x}{2}.cos\dfrac{6x-2x}{2}}

= 2cosx. (2sin4x.cos2x)

= 4cosx.cos2x.sin4x

_____________________________________________________

Some additional identities :-

★tan θ = sin θ /cos θ

★cot θ = cos θ / sin θ

★(sin² θ) + (cos² θ) = 1

★1 + tan² θ = sec² θ

★1 + cot² θ = cosec² θ

Answered by Anonymous
3

Answer:

→ sinx + sin3x + sin5x + sin7x

= (sinx + sin3x) + (sin5x + sin7x)

Formula:

\tt{\rightarrow sinC+sinD = 2sin\dfrac{C+D}{2}.cos\dfrac{C-D}{2}}

Using this formula:

\tt{\rightarrow 2sin\dfrac{x+3x}{2}.cos\dfrac{3x-x}{2} + 2sin\dfrac{5x+7x}{2}.cos\dfrac{7x-5x}{2}}

= 2sin2x.cosx + 2sin6x.cosx

= 2cosx [sin2x + sin6x ]

\tt{\rightarrow 2cosx(2sin\dfrac{2x+6x}{2}.cos\dfrac{6x-2x}{2})}

= 2cosx. (2sin4x.cos2x)

= 4cosx.cos2x.sin4x

Similar questions
English, 1 year ago