Math, asked by anayayadav16, 10 months ago

prove that sinx+sin3x+sin5x+sin7x= 4cosx.cos2x.sin4x ​

Answers

Answered by magneticpower00
2

Answer

LHS =sinx + sin3x + sin5x + sin7x

= (sinx + sin3x) + (sin5x + sin7x)

use the formula ,

sinC + sinD = 2sin(C+D)/2.cos(C-D)/2

= 2sin(x + 3x)/2.cos(3x -x)/2 + 2sin(5x+7x)/2.cos(7x-5x)/2

= 2sin2x.cosx + 2sin6x.cosx

= 2cosx [sin2x + sin6x ]

= 2cosx [ 2sin(2x + 6x)/2.cos(6x-2x)/2]

=2cosx. [ 2sin4x.cos2x ]

= 4cosx.cos2x.sin4x = RHS

Similar questions