prove that sinx*tanx/1-cosx= 1+secx
Answers
Answered by
0
Answer:
secx−tanx
1
=
sec
2
x−tan
2
x
secx+tanx
=secx+tanx
secx−tanx
1
−
cosx
1
=secx+tanx−secx=tanx
Answered by
0
Answer:
sinx.tanx/(1-cosx)=sinx.sinx/(cosx(1-cosx))
sin^2x/cosx(1-cosx)
=(1-cos^2x)/(cosx(1-cosx))=(1+cosx)(1-cosx)/(cosx(1-cosx))=1+cosx/cosx=(1/cosx+cosx/cosx)
=secx+1 proved
Similar questions