prove that Sn - Sn-1 = an
Answers
Answered by
69
Answer:
So
Answered by
45
Answer:
QED
Step-by-step explanation:
an = a + (n-1)d
Sn = (n/2)(a + a + (n-1)d)
Sn-1 = {(n-1)/2}(a + a + (n-2)d)
Sn - Sn-1 = (n/2)(a + a + (n-1)d) - [ {(n-1)/2}(a + a + (n-2)d)]
Sn - Sn-1 = (n/2)(2a + (n-1)d) - [ {(n-1)/2}(2a + (n-2)d)]
Sn - Sn-1 = na + n(n-1)d/2 - [ na - a +(n-1)(n-2)d/2]
Cancelling na and splitting(n-1)(n-2)
Sn - Sn-1 = n(n-1)d/2 - [ - a +n(n-1)d/2 -2(n-1)d/2]
Cancelling n(n-1)d/2
Sn - Sn-1 = - [ - a -2(n-1)d/2]
Sn - Sn-1 = a + (n-1)d
Sn - Sn-1 = an
QED
Similar questions