prove that squad root of 7 is an irrational number
Answers
Answer:
Let us assume that
7
is rational. Then, there exist co-prime positive integers a and b such that
7
=
b
a
⟹a=b
7
Squaring on both sides, we get
a
2
=7b
2
Therefore, a
2
is divisible by 7 and hence, a is also divisible by7
so, we can write a=7p, for some integer p.
Substituting for a, we get 49p
2
=7b
2
⟹b
2
=7p
2
.
This means, b
2
is also divisible by 7 and so, b is also divisible by 7.
Therefore, a and b have at least one common factor, i.e., 7.
But, this contradicts the fact that a and b are co-prime.
Thus, our supposition is wrong.
Hence,
7
is irrational.
Step-by-step explanation:
let us assume that √7 be rational.
then it must in the form of p / q [q ≠ 0] [p and q are co-prime]
√7 = p / q
=> √7 x q = p
squaring on both sides
=> 7q2= p2 ------ (1)
p2 is divisible by 7
p is divisible by 7
p = 7c [c is a positive integer] [squaring on both sides ]
p2 = 49 c2 --------- (2)
Subsitute p2 in equ (1) we get
7q2 = 49 c2
q2 = 7c2
=> q is divisible by 7
thus q and p have a common factor 7.
there is a contradiction
as our assumsion p & q are co prime but it has a common factor.
So that √7 is an irrational.
PLEASE MARK AS BRAINLIESTS ❣️