prove that square of any positive integer is of the form 4m or 4m+1
Answers
Answered by
1
Step-by-step explanation:
Applying Euclids division algorithm with a,b,q and r where b=4 (Theorem 1.1)
⇒a=bq+r,0≤r<b
⇒a=4q+r,0≤r<4
i) When r=0,a=4q
Thus a
2
=16q
2
=4(4q
2
)=4Q where Q=4q
2
ii) When r=1,a=4q+1
⇒a
2
=(4q+1)
2
=16q
2
+6q+1=4q(4q+2)+1=4Q+1
where 4q+2=Q
iii) when r=2,a=4q+2
⇒a
2
=16q
2
+16q+4=4(4q
2
+4q+1)4R
Where a=4q
2
+4q+1
iv) When r=3,a=4q+3
⇒a
2
=(4q+3)
2
=16q
2
+24q+9=4(4q
2
+6q+2)+1
=42+1 when 2=4q
2
+q+1
Thus we can see that the square of any +ve integer is of the form 4Q or 4Q+1 for some integer Q
Answered by
0
Answer:
2m
Step-by-step explanation:
4m+1=5m
4m=5m
m=5m-4
m=1m
- =1m
Similar questions