Math, asked by srihu5937, 1 year ago

prove that square root of sec^2 A + cosec^2 A= tan A + cotA

Answers

Answered by Anonymous
95
hey yor answer is here__________
_____________________________

L.H.S = square root of (sec^2 A+cosec^2 A) 

= square root of (1/cos^2A + 1/sin^2A) 

= square root of ((sin^2A + cos^2A)/cos^2A * sin^2A) 

I taken LCMof cos^2A & sin^2A. which is cos^2A * sin^2A 

now 

The solution of ur question is listed below:- 

L.H.S = square root of (1/ cos^2A * sin^2A) 
because sin^2A + cos^2A =1 

so L.H.S = (1/ cosA * sinA) After removed the square root. 

L.H.S = (sin^2A + cos^2A/ cosA * sinA) 

I written here (1 = sin^2A + cos^2A) 

now, L.H.S = (sin^2A/cosA * sinA) + (cos^2A/cosA * sinA) 

= (sinA/cosA) + (cosA/sinA) 

= (tanA + cotA) = R.H.S Proved.
Answered by Hanish2004
58

Answer:

Step-by-step explanation:

Hope it helps you..

Attachments:
Similar questions