Prove That sum of measure of all angles in triangles is 180°
Answers
Answered by
3
Answer:
the answer is
Step-by-step explanation:
Consider a ∆ABC, as shown in the figure below. To prove the above property of triangles, draw a line PQ←→ parallel to the side BC of the given triangle.
Angle sum property of a triangle theorem 1
Since PQ is a straight line, it can be concluded that:
∠PAB + ∠BAC + ∠QAC = 180° ………(1)
Since PQ||BC and AB, AC are transversals,
Therefore, ∠QAC = ∠ACB (a pair of alternate angle)
Also, ∠PAB = ∠CBA (a pair of alternate angle)
Substituting the value of ∠QAC and∠PAB in equation (1),
∠ACB + ∠BAC + ∠CBA= 180°
Thus, the sum of the interior angles of a triangle is 180°.
Similar questions