Math, asked by shubham702373, 5 months ago

prove that sum of the measurement of all the interior angles of a polygon of sides n is 2(n-2) right angle​

Answers

Answered by ranjan12342003
3

Answer:

Given: Let PQRS .... Z be a polygon of n sides.

To prove: ∠P + ∠Q + ∠R + ∠S + ..... + ∠Z = (2n – 4) 90°.

Construction: Take any point O inside the polygon. Join OP, OQ, OR, OS, ....., OZ.

Sum of the Interior Angles of a Polygon

0Save

Proof:

Statement

Reason

1. As the polygon has n sides, n triangles are formed, namely, ∆OPQ, ∆QR, ...., ∆OZP.

1. On each side of the polygon one triangle has been drawn.

2. The sum of all the angles of the n triangles is 2n right angles.

2. The sum of the angles of each triangle is 2 right angles.

3. ∠P + ∠Q + ∠R + ..... + ∠Z + (sum of all angles formed at O) = 2n right angles.

3. From statement 2.

4. ∠P + ∠Q + ∠R + ..... + ∠Z + 4 right angles = 2n right angles.

4. Sum of angles around the point O is 4 right angles.

5. ∠P + ∠Q + ∠R + ..... + ∠Z

= 2n right angles - 4 right angles

= (2n – 4) right angles

= (2n – 4) 90°. (Proved)

Similar questions