CBSE BOARD X, asked by subashthri, 10 months ago

prove that sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides​

Answers

Answered by yaditanush1
0

Answer:

In parallelogram ABCD,

AB=CD and BC=AD

Draw perpendiculars from C and D on AB as shown.

In right angled △AEC,

⇒ (AC)

2

=(AE)

2

+(CE)

2

[ By Pythagoras theorem ]

⇒ (AC)

2

=(AB+BE)

2

+(CE)

2

⇒ (AC)

2

=(AB)

2

+(BE)

2

+2×AB×BE+(CE)

2

----- ( 1 )

From the figure CD=EF [ Since CDFE is a rectangle ]

But CD=AB

⇒ AB=CD=EF

Also CE=DF [ Distance between two parallel lines

⇒ △AFD≅△BEC [ RHS congruence rule ]

⇒ AF=BE [ CPCT ]

Considering right angled △DFB

⇒ (BD)

2

=(BF)

2

+(DF)

2

[ By Pythagoras theorem ]

⇒ (BD)

2

=(EF−BE)

2

+(CE)

2

[ Since DF=CE ]

⇒ (BD)

2

=(AB−BE)

2

+(CE)

2

[ Since EF=AB ]

⇒ (BD)

2

=(AB)

2

+(BE)

2

−2×AB×BE+(CE)

2

----- ( 2 )

Adding ( 1 ) and ( 2 ), we get

(AC)

2

+(BD)

2

=(AB)

2

+(BE)

2

+2×AB×BE+(CE)

2

+(AB)

2

+(BE)

2

−2×AB×BE+(CE)

2

⇒ (AC)

2

+(BD)

2

=2(AB)

2

+2(BE)

2

+2(CE)

2

⇒ (AC)

2

+(BD)

2

=2(AB)

2

+2[(BE)

2

+(CE)

2

] ---- ( 3 )

In right angled △BEC,

⇒ (BC)

2

=(BE)

2

+(CE)

2

[ By Pythagoras theorem ]

Hence equation ( 3 ) becomes,

⇒ (AC)

2

+(BD)

2

=2(AB)

2

+2(BC)

2

⇒ (AC)

2

+(BD)

2

=(AB)

2

+(AB)

2

+(BC)

2

+(BC)

2

∴ (AC)

2

+(BD)

2

=(AB)

2

+(BC)

2

+(CD)

2

+(AD)

2

∴ The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.

Similar questions