Math, asked by sri1545, 1 year ago

prove that tanθ/1-Cotθ + cotθ/1-tanθ = 1 + secθ . cosθ.​


nishanthbillava2003: it should be cosec theta not cos theta
sri1545: ok i followed you

Answers

Answered by nishanthbillava2003
1
plzzzzzzzzzzz...... mark as brainliest
Attachments:

nishanthbillava2003: plzz mark as brainliest
nishanthbillava2003: plzz
sri1545: ok lets any one answer then only i xan mark as brainlist
sri1545: its not xan it is can
nishanthbillava2003: ok thanks
nishanthbillava2003: now mark as brainliest
Answered by Anonymous
5

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Correction in Question on RHS there should be 1 + secθ cosecθ

LHS :-

\tt{\rightarrow\dfrac{tan\theta}{1-cot\theta}+\dfrac{cot\theta}{1-tan\theta}}

\tt{\rightarrow\dfrac{sin\theta/cos\theta}{1-cos\theta/sin\theta}+\dfrac{cos\theta/sin\theta}{1-sin\theta/cos\theta}}

\tt{\rightarrow\dfrac{sin^2\theta}{cos\theta(sin\theta-cos\theta)}+\dfrac{cos^2\theta}{sin\theta(cos\theta-sin\theta)}}

\tt{\rightarrow\dfrac{sin^3\theta-cos^3\theta}{cos\theta\times sin\theta(sin\theta-cos\theta)}}

{\boxed{\sf\:{Identity=a^3-b^3=(a-b)(a^2+ab+b^2)}}}

\tt{\rightarrow\dfrac{(sin\theta-cos\theta)(sin^2\theta+sin\theta cos\theta+cos^2\theta)}{cos\theta sin\theta(sin\theta-cos\theta)}}

{\boxed{\sf\:{Using=sin^2\theta+cos^2\theta=1}}}

\tt{\rightarrow\dfrac{1+sin\theta cos\theta}{cos\theta sin\theta}}

\tt{\rightarrow\dfrac{1}{cos\theta sin\theta}+1}

= secθ cosecθ + 1

= 1 + secθ cosecθ

LHS = RHS

Similar questions