Math, asked by karanSathe102, 1 year ago

Prove that. tan/1-cot+cot/1-tan=(1+sec cosec)

Answers

Answered by kvnmurty
208
\frac{tanx}{1-cotx}+\frac{cotx}{1-tanx}\\\\=\frac{tanx}{\frac{tanx-1}{tanx}}+\frac{1}{tanx}\frac{1}{1-tanx}\\\\=\frac{tan^2x}{tanx-1}-\frac{1}{tanx\ (1- tanx)}\\\\=\frac{tan^3x-1}{tanx(tanx-1)}\\\\=\frac{(tanx-1)(tan^2x+tanx+1)}{tanx(tanx-1)}\\\\if\ tanx\ \neq\ 1,\ then:\\\\=tanx+1+Cotx\\\\=1+\frac{sinx}{cosx}+\frac{cosx}{sinx}\\\\=1+\frac{sin^2+cos^2x}{sinx\ cosx}\\\\=1+secx\ cosecx


Answered by shaheersheikhbsvs
73

Answer:

I hope you guys will find it useful pls mark me as brainliest

Step-by-step explanation:

Attachments:
Similar questions