Math, asked by Vishurj5398, 9 months ago

Prove that tan^-1√x=1/2cos^-1[(1-x)÷(1+x)]

Answers

Answered by saounksh
1

Step-by-step explanation:

let \:  \tan {}^{ - 1} ( \sqrt{x} ) =  \alpha

or

x =  \tan {}^{2} ( \alpha )

RHS =

 \frac{1}{2}  \cos {}^{ - 1} ( \frac{1 - x}{1 + x} )

 \frac{1}{2}  \cos {}^{ - 1} ( \frac{1 -  \tan {}^{2} ( \alpha ) }{1 +  \tan {}^{2} ( \alpha ) } )

 \frac{1}{2}  \cos {}^{ - 1} ( \frac{1 -   \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) } }{1 +  \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) }  } )

 \frac{1}{2}  \cos {}^{ - 1} ( \frac{ \cos {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha )  +  \sin{}^{2} ( \alpha ) } )

 \frac{1}{2}  \cos {}^{ - 1} ( \frac{ \cos {}^{2} ( \alpha )  -  \sin {}^{2} ( \alpha ) }{1 } )

 \frac{1}{2}  \cos {}^{ - 1} ( \cos( 2\alpha ) )

 \frac{1}{2}  \times 2 \alpha  =  \alpha

 =  \tan {}^{ - 1} ( \sqrt{x} )

= LHS

Similar questions