prove that tan^-1(x)+tan^-1 2x÷1-x^2=tan^-1(3x-x^3)÷1-3x^2
Answers
Answered by
0
Answer:
tan^-1 is measure by tan¹
tan¹A + tan¹B = tan¹[(A+B) ÷1-AB]
so,
tan¹(x) + tan¹[(2x)÷1-x²] = tan¹[(x+(2x)÷1-x²) ÷1-(x).(2x)÷1-x²]
=> tan¹{[(x)*(1-x²) + (2x)] ÷[1-x² -
Similar questions