Math, asked by sethirekha1111p9bs9b, 1 year ago

prove that tan 10 tan 50 tan 70 =tan 30

Answers

Answered by erinna
57

Answer:

\tan 10\tan 50\tan 70=\tan 30

Step-by-step explanation:

We need to prove that

\tan 10\tan 50\tan 70=\tan 30

Taking LHS,

LHS=\tan 10\tan 50\tan 70

It can be rewritten as

LHS=\tan 10\tan (60-10)\tan (60+10)

We know that

\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B} and \tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}

Using the above formulas we get

LHS=\tan 10(\frac{\tan 60-\tan 10}{1+\tan 60\tan 10})(\frac{\tan 60+\tan 10}{1-\tan 60\tan 10})

LHS=\tan 10(\frac{\tan^2 60-\tan^2 10}{1^2-(\tan 60\tan 10)^2})

LHS=\tan 10(\frac{(\sqrt 3)^2-\tan^2 10}{1-(\sqrt 3)^2\tan^2 10})               [\because a^2-b^2=(a-b)(a+b)]

LHS=\tan 10(\frac{3-\tan^2 10}{1-3\tan^2 10})                     [\because \tan 60=\sqrt{3}]

LHS=\frac{3\tan 10-\tan^3 10}{1-3\tan^2 10}

LHS=\tan (3\times 10)              \tan 3x=\frac{3\tan x-\tan^3x}{1-3\tan^2x}

LHS=\tan 30

LHS=RHS

Hence proved.

Answered by soumyajitbhattachary
1

Answer:

proved

Step-by-step explanation:

Answer:

\tan 10\tan 50\tan 70=\tan 30tan10tan50tan70=tan30

Step-by-step explanation:

We need to prove that

\tan 10\tan 50\tan 70=\tan 30tan10tan50tan70=tan30

Taking LHS,

LHS=\tan 10\tan 50\tan 70LHS=tan10tan50tan70

It can be rewritten as

LHS=\tan 10\tan (60-10)\tan (60+10)LHS=tan10tan(60−10)tan(60+10)

We know that

\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}tan(A+B)=

1−tanAtanB

tanA+tanB

and \tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}tan(A−B)=

1+tanAtanB

tanA−tanB

Using the above formulas we get

LHS=\tan 10(\frac{\tan 60-\tan 10}{1+\tan 60\tan 10})(\frac{\tan 60+\tan 10}{1-\tan 60\tan 10})LHS=tan10(

1+tan60tan10

tan60−tan10

)(

1−tan60tan10

tan60+tan10

)

LHS=\tan 10(\frac{\tan^2 60-\tan^2 10}{1^2-(\tan 60\tan 10)^2})LHS=tan10(

1

2

−(tan60tan10)

2

tan

2

60−tan

2

10

)

LHS=\tan 10(\frac{(\sqrt 3)^2-\tan^2 10}{1-(\sqrt 3)^2\tan^2 10})LHS=tan10(

1−(

3

)

2

tan

2

10

(

3

)

2

−tan

2

10

) [\because a^2-b^2=(a-b)(a+b)][∵a

2

−b

2

=(a−b)(a+b)]

LHS=\tan 10(\frac{3-\tan^2 10}{1-3\tan^2 10})LHS=tan10(

1−3tan

2

10

3−tan

2

10

) [\because \tan 60=\sqrt{3}][∵tan60=

3

]

LHS=\frac{3\tan 10-\tan^3 10}{1-3\tan^2 10}LHS=

1−3tan

2

10

3tan10−tan

3

10

LHS=\tan (3\times 10)LHS=tan(3×10) \tan 3x=\frac{3\tan x-\tan^3x}{1-3\tan^2x}tan3x=

1−3tan

2

x

3tanx−tan

3

x

LHS=\tan 30LHS=tan30

LHS=RHSLHS=RHS

Hence proved.

Similar questions