Math, asked by VSP111, 1 month ago

Prove that tan 11pi/24 =√2+√3+√4+√6

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:tan\bigg[\dfrac{11\pi}{24} \bigg]

\rm \:  =  \: \:tan\bigg[\dfrac{11 \times 180 \degree \: }{24} \bigg]

\rm \:  =  \: \:tan\bigg[\dfrac{11 \times 15 \degree \: }{2} \bigg]

\rm \:  =  \: \:tan\bigg[\dfrac{165 \degree \: }{2} \bigg]

\rm \:  =  \: \:tan\bigg[82 \: \dfrac{ \: 1 \degree}{ \: 2 \: } \bigg]

\rm \:  =  \: \:tan\bigg[90\degree  - 7 \: \dfrac{\: 1 \degree}{ \: 2 \: } \bigg]

\rm \:  =  \: \:cot\bigg[7 \: \dfrac{\: 1 \degree}{ \: 2 \: } \bigg]

\rm \:  =  \: \:cot\bigg[ \: \dfrac{\: 15 \degree}{ \: 2 \: } \bigg]

Now, we know that

\red{ \boxed{ \sf{ \:\:cotA =  \dfrac{cosA}{sinA} =  \dfrac{ {2cos}^{2} A}{2sinAcosA} =  \dfrac{1 + cos2A}{sin2A} }}}

\rm \:  =  \: \dfrac{1 + cos15\degree }{sin15\degree }

\rm \:  =  \: \dfrac{1 + cos(45\degree - 30\degree ) }{sin(45\degree - 30\degree)}

We know,

\red{ \boxed{ \sf{ \:cos(x - y) = cosxcosy + sinxsiny}}}

and

\red{ \boxed{ \sf{ \:sin(x - y) = sinxcosy - sinycosx}}}

So, using these Identities, we get

\rm \:  =  \: \dfrac{1 + cos45\degree cos30\degree + sin45\degree sin30\degree }{sin45\degree cos30\degree  - sin30\degree cos45\degree }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2} }{\dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{2}  \times \dfrac{1}{ \sqrt{2} } }

\rm \:  =  \: \dfrac{1 + \dfrac{ \sqrt{3} }{2 \sqrt{2} }  + \dfrac{1}{2 \sqrt{2} } }{\dfrac{ \sqrt{3} }{2 \sqrt{2} }  - \dfrac{1}{2 \sqrt{2} } }

\rm \:  =  \: \dfrac{2 \sqrt{2} +  \sqrt{3} + 1}{ \sqrt{3} - 1 }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{2 \sqrt{2} +  \sqrt{3} + 1}{ \sqrt{3} - 1 }  \times \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

\rm \:  =  \: \dfrac{2 \sqrt{6} + 3 +  \sqrt{3} + 2 \sqrt{2}  +  \sqrt{3}  + 1}{ { (\sqrt{3} )}^{2}  -  {1}^{2} }

\rm \:  =  \: \dfrac{2 \sqrt{6} + 4 +2  \sqrt{3} + 2 \sqrt{2}}{ 3 - 1 }

\rm \:  =  \: \dfrac{2 \sqrt{6} + 4 +2  \sqrt{3} + 2 \sqrt{2}}{2}

\rm \:  =  \:  \sqrt{6} + 2 +  \sqrt{3} +  \sqrt{2}

\rm \:  =  \:  \sqrt{6} +  \sqrt{4}  +  \sqrt{3} +  \sqrt{2}

Hence,

\bf :\longmapsto\:tan\bigg[\dfrac{11\pi}{24} \bigg] =  \sqrt{6} +  \sqrt{4} +  \sqrt{3} +  \sqrt{2}

Similar questions