Prove that : tan 142 1/2= 2 +✓2–✓3- ✓6
Answers
Answer:
Step-by-step explanation:
Go through following steps:
tan(142.5)=tan(180–37.5)
tan(142.5)=-tan(37.5)
tan(142.5)=-tan(75/2)
-tan(142.5)=tan(45/2+30/2)
-tan(142.5)=(tan(45/2)+tan(30/2))/(1-tan(45/2)*tan(30/2))
Now, we have tan(45/2)=((1-cos(45))/(1+cos(45)))^0.5
i.e. tan(45/2)=((2–2^0.5)/(2+2^0.5))^0.5
Also, we find tan(30/2)=((1-cos(30))/(1+cos(30)))^0.5
i.e. tan(30/2)=((2–3^0.5)/(2–3^0.5))^0.5
Substituting these values, we find
-tan(142.5)=(((2–2^0.5)/(2+2^0.5))^0.5+((2–3^0.5)/(2–3^0.5))^0.5)/(1-((2–2^0.5)/(2+2^0.5))^0.5*((2–3^0.5)/(2–3^0.5))^0.5)
i.e. tan(142.5)=(((2–2^0.5)/(2+2^0.5))^0.5+((2–3^0.5)/(2–3^0.5))^0.5)/(-1+((2–2^0.5)/(2+2^0.5))^0.5*((2–3^0.5)/(2–3^0.5))^0.5)
i.e. tan(142.5)=(2^0.5+1–3^0.5)/(3+6^0.5–3^0.5–2^1.5)
If you rationalize the denominator, you will get
tan(142.5)=2+2^0.5–3^0.5–6^0.5