prove that tan(180-theta) = -tan theta
Answers
Answered by
2
Step-by-step explanation:
Take theta equal to alpha
Putting values
Tan 180 = 0
Put values
We get
- tan (theta or alpha)
Answered by
0
Step-by-step explanation:
Take theta equal to alpha
tan( \alpha - \beta ) = \frac{tan( \alpha ) - tan( \beta )}{1 + tan \alpha tan \beta }tan(α−β)=
1+tanαtanβ
tan(α)−tan(β)
Putting values
\tan(180 - \alpha ) = \frac{ \tan(180 ) - \tan( \alpha ) }{1 + \tan(180) \tan( \alpha ) }tan(180−α)=
1+tan(180)tan(α)
tan(180)−tan(α)
Tan 180 = 0
Put values
We get
Similar questions