Math, asked by anjana252004, 7 months ago

prove that tan^2 a ×(coseca-1/1+cosa)+cosec^2 a (cosa-1/1+coseca =0

Answers

Answered by ashishks1912
4

GIVEN :

Prove that tan^2 a\times (\frac{coseca-1}{1+cosa})+cosec^2 a\times (\frac{cosa-1}{1+coseca}) =0

TO PROVE :

The given equation tan^2 a\times (\frac{coseca-1}{1+cosa})+cosec^2a\times (\frac{cosa-1}{1+coseca}) =0 is true

SOLUTION :

Given equation is tan^2 a\times (\frac{coseca-1}{1+cosa})+cosec^2 a \times (\frac{cosa-1}{1+coseca}) =0

We have to prove that the given equation is true.

Now taking the LHS

tan^2 a\times (\frac{coseca-1}{1+cosa})+cosec^2a\times (\frac{cosa-1}{1+coseca} )

Multiplying and dividing by its denominators conjugate for both the terms,

=\frac{sin^2a}{cos^2a}\times (\frac{coseca-1}{1+cosa})\times (\frac{1-cosa}{1-cosa})+cosec^2 a\times (\frac{cosa-1}{1+coseca})\times (\frac{1-coseca}{1-coseca})

By using the algebraic identity :

(a+b)(a-b)=a^2-b^2

=\frac{sin^2a}{cos^2a}\times (\frac{(coseca-1)(1-cosa)}{1^2-cos^2a})+cosec^2 a (\frac{(cosa-1)(1-coseca)}{1^2-cosec^2a})

By using the trignometric identities

  • tanx=\frac{sinx}{cosx}
  • cotx=\frac{cosx}{sinx}
  • 1-cos^2x=sin^2x
  • 1-cosec^2x=-cot^2x
  • cosec^2x=\frac{1}{sin^2x}

=\frac{1}{cos^2a}\times (coseca-cota-1+cosa)+\frac{1}{sin^2a}(\frac{cosa-cota-1+coseca}{-cot^2a})

=\frac{1}{cos^2a}\times (coseca-cota-1+cosa)+\frac{1}{sin^2a}(\frac{cosa-cota-1+coseca}{-\frac{cos^2a}{sin^2a}})

=\frac{1}{cos^2a}\times (coseca-cota-1+cosa)+\frac{cosa-cota-1+coseca}{-cos^2a}

=\frac{1}{cos^2a}\times (coseca-cota-1+cosa)+(\frac{-cosa+cota+1-coseca}{cos^2a})

=\frac{coseca-cota-1+cosa-cosa+cota+1-coseca}{cos^2a}

=\frac{0}{cos^2a}

= 0 = RHS

LHS = RHS

tan^2 a\times (\frac{coseca-1}{1+cosa})+cosec^2 a\times (\frac{cosa-1}{1+coseca}) =0

Similar questions