prove that, tan^2 A+ tan^2 B = sin(A+B). sin (A-B)/ cos^2 A .cos ^2B
Attachments:
Answers
Answered by
2
LHS = tan²A - tan²B
={ sin²A/cos²A } - { sin²B/cos²B }
= {sin²A.cos²B - sin²B.cos²A }/cos²A.cos²B
we know,
sin²x + cos²x = 1
so,
cos²B = 1 - sin²B
cos²A = 1 - sin²A
use this here,
= {sin²A (1 - sin²B) - sin²B(1 - sin²A)}/cos²A.cos²B
= { sin²A - sin²A.sin²B - sin²B + sin²A.sin²B }/cos²A.cos²B
= ( sin²A - sin²B )/cos²A.cos²B = RHS
Similar questions
Math,
5 months ago
Math,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
Biology,
10 months ago
Environmental Sciences,
1 year ago