prove that tan^2 a - tan^2b =sec^2a - sec^2 b
Answers
Answered by
17
Given to prove :-
tan²A tan²B = sec²A- sec²B
SOLUTION:-
Take L.H.S
tan²A -tan²B
As all we know that,
sec²A -tan²A = 1
Make a subject tan²A
sec²A -1 = tan²A------- eq 1
Similarily ,
sec²B - 1 = tan²B ------- eq 2
Substitute the values in tan²A-tan²B
sec²A- 1 -(sec²B-1)
sec²A- 1 - sec²B + 1
sec²A- sec²B - 1 + 1
sec²A - sec²B
So,
tan²A - tan²B = sec²A -sec²B
Hence ,
L.H.S =R.H.S
Proved !
☆Know more ☆
Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Similar questions
Geography,
1 month ago
Math,
1 month ago
Environmental Sciences,
3 months ago
Computer Science,
10 months ago
Math,
10 months ago