Math, asked by archaprasad72, 19 days ago

prove that tan ^2 - sin ^2 = tan ^2 sin ^2

Answers

Answered by ZzyetozWolFF
2

Step-by-step explanation:

To prove the trigonometric identity :

\implies \sf tan^2 \theta - sin^2 \theta= tan^2 \theta sin ^2 \theta

Let's take LHS :

\implies \sf tan^2 \theta - sin^2 \theta = \dfrac{sin^2 \theta}{cos^2 \theta} - sin^2 \theta \\\\\\\bold{\boxed{\bold{tan^2\theta = \dfrac{sin^2 \theta}{cos^2 \theta}}}}

\implies \sf \bigg( \dfrac{sin \theta}{cos \theta} \bigg)^2 - \bigg(\dfrac{sin^2 \theta. cos^2 \theta}{cos^2 \theta} \bigg)

\implies \sf \dfrac{sin^2 \theta (1-cos^2 \theta)}{cos^2 \theta}

\implies \sf tan^2 \theta (1-cos^2 \theta)

\boxed{\bold{Formula: sin^2 \theta + cos^2 \theta =  1 \implies 1-cos^2 \theta = sin^2 \theta}}\\\\\implies \sf \bold{tan^2 \theta. sin^2 \theta}

Hence proved

(A solution has also been attached.)

Attachments:
Similar questions