Math, asked by jerinjeejo, 1 year ago

prove that tan^2 theta+cot^2 theta=sec^2 theta cosec^2 theta-2

Answers

Answered by ashu3998825
1

Answer:

 \ {tan}^{2} a +  {cot}^{2} a  =  \frac{ {sin}^{2} a}{ {cos}^{2} a}  +  \frac{ {cos}^{2}a }{ {sin}^{2}a }

 \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ {( {sin}^{2} a)}^{2} +  { ({cos}^{2}a) }^{2}  }{ { {cos}^{2}a } \:  \:  \  {sin}^{2}a }

since (\: {\:  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab})

 \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  = \frac{ ({sin}^{2}a  +  {cos}^{2}a) - 2 {sin}^{2} a  \:  \: {cos}^{2}  a}{ {cos}^{2} a \:  \: {sin}^{2} a }

since (\:  {sin}^{2} a +  {cos}^{2} a = 1)

 \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 - 2 {sin}^{2} a \:  \:  {cos}^{2} a}{ {cos}^{2}a \:  \:  {sin}^{2} a}

 \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{ {cos}^{2}a  \:  \:  {sin}^{2}a }  -  \frac{2  {sin}^{2}a  \:  \:  {cos}^{2}a  }{ {cos}^{2} a \:  \: {sin}^{2}a  }

since( { \frac{1}{ {cos}^{2} a} } =  {sec}^{2}a \:  \:  \\ and \frac{1}{ {sin}^{2}a }   =  {cosec}^{2} a)

{tan}^{2}a+{cot}^{2}a={sec}^{2}a \:{cosec}^{2}a-2

Similar questions