Math, asked by dolly7924, 11 months ago

prove that: tan 26 tan 23 tan 45 tan 67 tan 64 =1​

Answers

Answered by BrainlyPopularman
9

Answer:

tan 26 = tan (90-64) = cot 64

tan 23 = cot 67

 =  \cot(64 )  \times  \cot(67)  \times  \tan(45)  \times  \tan(67) \times  \tan(64)    \\  =  \frac{ \tan(67) }{ \tan(67) }  \times   \frac{ \tan(64) }{ \tan(64) }  \times  \tan(45 )  \\  = 1 \:

H.P.

mark as brilliant

Answered by JeanaShupp
1

In mathematics , trigonometry is one of its branch that define the connection between measure of angles and side-lengths in a triangle.

Explanation:

To prove: tan 26° tan 23° tan 45° tan 67° tan 64° =1​

Consider L.H.S

tan 26° tan 23° tan 45° tan 67° tan 64°

= tan 26° tan 23° tan 45° cot(90°-67°) cot (90°-64°)  [∵ tan A = cot (90°-A) ]

= tan 26° tan 23° tan 45° cot 23° cot 26°

= tan 26° cot 26°tan 23°cot 23° tan 45°  

=(1)(1)(1)                                  [∵ tan 45° =1 and tan A cot A =1]

=1 = R.H.S.

Hence proved.

# Learn more :

Tan 48 tan 23 - tan 42 tan 67​

https://brainly.in/question/14919243

Similar questions