Math, asked by Tanu444, 8 months ago

Prove that tan^2A +cot^2A +2=cosec^2A *sec^2A

Answers

Answered by vipancheema875
0

Answer:

2a 2a 2 = 2a so it is a answer .

Answered by Anonymous
3

tan² A + cot² A + 2 = csc² A. sec² A

Step-by-step explanation:

Given that :

Prove that: tan² A + cot²A + 2 = csc² A. sec² A

LHS :

\sf \implies \tan^{2}\:A + \cot^{2}\:A + 2

\sf \implies \tan^{2}\:A  + 1+ \cot^{2}\:A + 1

  • tan² A + 1 = sec² A
  • cot² A + 1 = csc² A

\sf \implies \sec^{2}\:A +\csc^{2}\:A

  • sec² A = 1/cos² A
  • csc² A = 1/sin² A

\sf \implies \cfrac{1}{\cos^{2}\:A} + \cfrac{1}{\sin^{2}\:A}

\sf \implies \cfrac{\sin^{2}\:A + \cos^{2}\:A}{\cos^{2}\:A\sin^{2}\:A}

  • sin² A + cos² A = 1

\sf \implies \cfrac{1}{\cos^{2}\:A\sin^{2}\:A }

\sf \implies \cfrac{1}{\cos^{2}\:A}   \: \:  \: .  \:  \:  \: \cfrac{1}{\sin^{2}\:A }

\sf \implies \sec^{2}\:A .\csc^{2}\:A

Hence,LHS = RHS.

IT WAS PROVED.

Similar questions