Math, asked by sumaiya4523, 11 months ago

Prove that tan^2A-sin^2A=tan^2A*sin^2A

Answers

Answered by coolravikumar9
0

Answer:

taking LHS and then prove

Attachments:
Answered by InfiniteSoul
0

\sf{\underline{\boxed{\purple{\large{\bold{Solution }}}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ tan^2A - Sin^2A = tan^2A . Sin^2A}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{TanA = \dfrac{Sin A}{ Cos A} }}}}

⠀⠀⠀⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{Sin^2A}{Cos^2A} - Sin^2A = tan^2A . Sin^2A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{Sin^2A - Sin^2ACos^2A}{Cos^2A}  = tan^2A . Sin^2A }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{Sin^2A ( 1 - cos^2A) }{Cos^2A}  = tan^2A . Sin^2A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{1 - Cos^2A = Sin^2 A}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{Sin^2A \times Sin^2A}{Cos^2A}  = tan^2A . Sin^2A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{\dfrac{Sin^2A}{Cos^2A}  = Tan^2A}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ Tan^2A . Sin^2A = tan^2A . Sin^2A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

LHS = RHS

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀.... Hence Proved

⠀⠀⠀⠀

Similar questions