prove that tan^2A - tan^2B = sin^2A - sin^2B/cos^2A cos^2B
Answers
Answered by
1
Step-by-step explanation:
put A,B = 0°
0 -0 = 0- 0/1 , 0 = 0 satisfied
Answered by
1
hey mate here is ur answer
LHS = tan²A - tan²B
={ sin²A/cos²A } - { sin²B/cos²B }
= {sin²A.cos²B - sin²B.cos²A }/cos²A.cos²B
we know,
sin²x + cos²x = 1
so,
cos²B = 1 - sin²B
cos²A = 1 - sin²A
use this here,
= {sin²A (1 - sin²B) - sin²B(1 - sin²A)}/cos²A.cos²B
= { sin²A - sin²A.sin²B - sin²B + sin²A.sin²B }/cos²A.cos²B
= ( sin²A - sin²B )/cos²A.cos²B = RHS
hope it helps u
mark me as brainlist
thank u
follow me
inbox me
thanks my all answers
Similar questions