Math, asked by NaniNarendra, 11 months ago

Prove that Tan^2A-Tan^B=

cos^2B-Cos^2A
-------------------------..
Cos^2A*Cos^2B

Answers

Answered by Swarup1998
4

To prove. tan^{2}A-tan^{2}B=\frac{cos^{2}B-cos^{2}A}{cos^{2}A*cos^{2}B}

Proof:

Now, tan^{2}A-tan^{2}B

Step 1.

Use the identity: sec^{2}A-tan^{2}A=1

=(sec^{2}A-1)-(sec^{2}B-1)

Step 2.

Use distributive property: a(b-c)=ab-ac

=sec^{2}A-1-sec^{2}B+1

Step 3.

We know that: +a-a=0

=sec^{2}A-sec^{2}B

Step 4.

Use: secA=\frac{1}{cosA}

=\frac{1}{cos^{2}A}-\frac{1}{cos^{2}B}

Step 5.

Do LCM:

=\frac{cos^{2}B-cos^{2}A}{cos^{2}A*cos^{2}B}

\Rightarrow \boxed{tan^{2}A-tan^{2}B=\frac{cos^{2}B-cos^{2}A}{cos^{2}A*cos^{2}B}}

Hence proved.

Remark: The proof can be given in another way by taking the right hand side. Use the algebraic formula \frac{a-b}{c} first and then try to find form of \frac{sinA}{cosA} in order to get tanA.

Similar questions