prove that tan^2theta+cot^2theta=sec^2theta.cosec^2theta-2
Answers
Answered by
1
Answer:
solved
Step-by-step explanation:
let theta =
LHS = tan^2theta+cot^2theta = tan²∝+cot²∝ = sin²∝/cos²∝+cos²∝/sin²∝
= sin^4∝ + cos^4∝ ÷ sin²∝cos²∝
= ( cos²∝+sin²∝)² - 2sin²∝cos²∝ ÷ sin²∝cos²∝
= (1 - 2sin²∝cos²∝) ÷ sin²∝cos²∝
= 1/sin²∝cos²∝ - 2
= sec²∝cosec²∝ - 2
= RHS
Answered by
4
Wrong Question:-
Attachments:
Similar questions