Math, asked by vibhavtrivedi, 11 months ago

prove that tan^2theta+cot^2theta=sec^2theta.cosec^2theta-2

Answers

Answered by azizalasha
1

Answer:

solved

Step-by-step explanation:

let theta =

LHS = tan^2theta+cot^2theta = tan²∝+cot²∝ = sin²∝/cos²∝+cos²∝/sin²∝

=  sin^4∝ + cos^4∝ ÷ sin²∝cos²∝

= ( cos²∝+sin²∝)² - 2sin²∝cos²∝ ÷ sin²∝cos²∝

= (1 - 2sin²∝cos²∝) ÷ sin²∝cos²∝

= 1/sin²∝cos²∝  - 2

= sec²∝cosec²∝ - 2

= RHS

Answered by amitkumar44481
4

Wrong Question:-

 \cancel{prove \:  that  \: {tan }^{2} \theta +cot^2 \theta=sec^2 \theta.cosec^2 \theta-2.}

 \bold {\underline {Solution:-}}

Attachments:
Similar questions